In the next table numerical results are displayed. An exact random-Poisson generator has been used to generate Poisson deviates of given average value
, with
. For each value
deviates have been generated. Then averages have been taken for each value
and compared with the true value.
For each value
- in order to have a scale for comparison -
we evaluate the expected absolute s.d. of averages as
, and the relative s.d. of averages as
. Then - for each averaging method - we evaluate the error
(average minus
),
the relative error
, and finally the comparison criterion
(bold). The comparison criterion is expected to be close to 1 in absolute value. Values much larger than one mean that we are introducing a systematic error.
![]() ![]() ![]() |
||||
![]() |
![]() |
![]() |
![]() |
|
Averages | 1.303772380383934 | 0.9999155361216990 | 1.581941754994651 | 0.9999283300000000 |
![]() |
0.3037723803839338 | -0.8446387830096658E-04 | 0.5819417549946508 | -0.7166999999996815E-04 |
![]() |
0.3037723803839338 | -0.8446387830096658E-04 | 0.5819417549946508 | -0.7166999999996815E-04 |
![]() |
3037.723803839338 | -0.8446387830096658 | 5819.417549946508 | -0.7166999999996815 |
![]() ![]() ![]() |
||||
![]() |
![]() |
![]() |
![]() |
|
Averages | 8.848248847530357 | 10.00025732384808 | 10.00052232372917 | 10.00006800000000 |
![]() |
-1.151751152469645 | 0.2573238480785278E-03 | 0.5223237291644978E-03 | 0.6799999999884676E-04 |
![]() |
-0.1151751152469645 | 0.2573238480785278E-04 | 0.5223237291644977E-04 | 0.6799999999884675E-05 |
![]() |
-3642.156939527943 | 0.8137294562072904 | 1.651732660112730 | 0.2150348808878029 |
![]() ![]() ![]() |
||||
![]() |
![]() |
![]() |
![]() |
|
Averages | 98.98978896904168 | 100.0001037814804 | 100.0002153600000 | 100.0002153600000 |
![]() |
-1.010211030958359 | 0.1037814803765968E-03 | 0.2153599999559219E-03 | 0.2153599999559219E-03 |
![]() |
-0.1010211030958359E-01 | 0.1037814803765968E-05 | 0.2153599999559218E-05 | 0.2153599999559218E-05 |
![]() |
-1010.211030958359 | 0.1037814803765968 | 0.2153599999559219 | 0.2153599999559219 |
![]() ![]() ![]() |
||||
![]() |
![]() |
![]() |
![]() |
|
Averages | 999.0029754507847 | 1000.003978305674 | 1000.003836760000 | 1000.003836760000 |
![]() |
-0.9970245492160075 | 0.3978305673513205E-02 | 0.3836759999330752E-02 | 0.3836759999330752E-02 |
![]() |
-0.9970245492160069E-03 | 0.3978305673513202E-05 | 0.3836759999330750E-05 | 0.3836759999330750E-05 |
![]() |
-315.2868458625229 | 1.258050715667192 | 1.213290043331128 | 1.213290043331128 |
![]() ![]() ![]() |
||||
![]() |
![]() |
![]() |
![]() |
|
Averages | 9998.995728116572 | 9999.995828163173 | 9999.995919900000 | 9999.995919900000 |
![]() |
-1.004271883437468 | -0.4171836835666909E-02 | -0.4080100008650334E-02 | -0.4080100008650334E-02 |
![]() |
-0.1004271883437467E-03 | -0.4171836835666905E-06 | -0.4080100008650330E-06 | -0.4080100008650330E-06 |
![]() |
-100.4271883437468 | -0.4171836835666907 | -0.4080100008650331 | -0.4080100008650331 |
![]() ![]() ![]() |
||||
![]() |
![]() |
![]() |
![]() |
|
Averages | 99999.01275394148 | 100000.0127639189 | 100000.0125627100 | 100000.0125627100 |
![]() |
-0.9872460587212117 | 0.1276391866849735E-01 | 0.1256270980229601E-01 | 0.1256270980229601E-01 |
![]() |
-0.9872460587212097E-05 | 0.1276391866849733E-06 | 0.1256270980229599E-06 | 0.1256270980229599E-06 |
![]() |
-31.21946156583365 | 0.4036305486159527 | 0.3972677655897895 | 0.3972677655897895 |
![]() ![]() ![]() |
||||
![]() |
![]() |
![]() |
![]() |
|
Averages | 999999.1188353101 | 1000000.118835812 | 1000000.118809340 | 1000000.118809340 |
![]() |
-0.8811646911781281 | 0.1188358106883243 | 0.1188093387754634 | 0.1188093387754634 |
![]() |
-0.8811646911781270E-06 | 0.1188358106883241E-06 | 0.1188093387754633E-06 | 0.1188093387754633E-06 |
![]() |
-8.811646911781276 | 1.188358106883242 | 1.188093387754633 | 1.188093387754633 |
As it is visible from the table: