next up previous contents
Next: Numerical comparison of averages Up: Average vs. weighted average Previous: Comparison   Contents

Analytical comparison of averages

First we give an analytical comparison between simple average and Mighell-Poisson weighted average for $ N_{\mathrm{obs}}=2$ . If the two events are $ C_1$ and $ C_2$ , then

$\displaystyle \langle x \rangle={\ensuremath{\displaystyle{\frac{{\ensuremath{\...
...nsuremath{\displaystyle{\sqrt{C_1+C_2}}}}}{{\ensuremath{\displaystyle{2}}}}}}}
$

For the M-P weighted average,

$\displaystyle \langle x \rangle_{\mathrm{w(2)}}={\ensuremath{\displaystyle{\fra...
...{\displaystyle{(C_1+1)(C_2+1)}}}}{{\ensuremath{\displaystyle{C_1+C_2+2}}}}}}}}
$

Now, supposing that the common 'true' value of $ C_1,C_2$ is $ \lambda$ , we use the Poisson distribution to compare the expectation values of the two results. The expectation value of the simple average is

$\displaystyle E{\ensuremath{\left({\langle x \rangle}\right)}} = \mathop{\sum}_...
...ath{\mathrm{e}}}^{-\lambda}}}}}{{\ensuremath{\displaystyle{n!}}}}}}}
=\lambda
$

As expected, the simple average gives the true value. For its variance,

$\displaystyle E{\ensuremath{\left({\sigma_x^2}\right)}} = \mathop{\sum}_{m,n=0}...
...ac{{\ensuremath{\displaystyle{\lambda}}}}{{\ensuremath{\displaystyle{2}}}}}}}}
$

In order to evaluate the difference with the M-P weighted average, we rewrite the latter as

$\displaystyle \langle x \rangle_{\mathrm{w(2)}}=\langle x \rangle + 1 -{\ensure...
...style{(C_1-C_2)^2}}}}{{\ensuremath{\displaystyle{4(\langle x \rangle+1)}}}}}}}
$

and calculate the expectation value of the last term:

$\displaystyle E{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremat...
...uremath{\displaystyle{\lambda^{n+m}}}}}{{\ensuremath{\displaystyle{n!m!}}}}}}}
$

Rearranging the sums with $ s=n+m$ , $ s=0\ldots +\infty$ ; $ n-m=s-2k$ , $ k=0\ldots s$ , we get

$\displaystyle E{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremat...
...hrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{4\lambda^2}}}}}}}
%{n!m!}
$

So, the relative difference between averages is

$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{E{\en...
...math{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{4\lambda^3}}}}}}}
$

The relative error on $ \langle x \rangle$ is

$\displaystyle \epsilon = {\ensuremath{\displaystyle{\frac{{\ensuremath{\display...
...suremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{\sqrt{2\lambda}}}}}}}}
$

therefore

$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{E{\en...
...aystyle{E{\ensuremath{\left({\langle x \rangle}\right)}}}}}}}}}=
O(\epsilon^2)
$

Therefore, the expectation value of the error (relative) involved in taking the M-P weighted average instead of the simple average is negligible.


next up previous contents
Next: Numerical comparison of averages Up: Average vs. weighted average Previous: Comparison   Contents
Thattil Dhanya 2019-04-08