next up previous contents
Next: Mighell-Poisson weighted average Up: Average vs. weighted average Previous: Weighted average: definition and   Contents

Straight Poisson (zero-skipping) weighted average

When $ O_j=C_j$ and $ \sigma_j^2=C_j$

$\displaystyle \langle x \rangle_{\!\mathrm{w(1)}}={\ensuremath{\displaystyle{\f...
...nsuremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
C_j
}}}}}}}
}}}}}}}
$

Here we need to eliminate the singularity when $ C_j=0$ . In order to do so, we skip data points which are zero. Then if $ N_{\mathrm{obs}}^*$ is the number of non-zero data points,

$\displaystyle \langle x \rangle_{\!\mathrm{w(1)}}={\ensuremath{\displaystyle{\f...
...nsuremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
C_j
}}}}}}}
}}}}}}}
$

$\displaystyle \sigma_{\langle x \rangle_{\!\mathrm{w(1)}}} = {\ensuremath{\disp...
..._{\!\mathrm{w(1)}}}}}}{{\ensuremath{\displaystyle{
N_{\mathrm{obs}}^*
}}}}}}}}
$

$\displaystyle \mathsf{GoF}_{(1)}=
\sqrt{
{\ensuremath{\displaystyle{\frac{{\ens...
...th{\left({
\langle x\rangle^*-\langle x \rangle_{\!\mathrm{w(1)}}
}\right)}}
}
$

where $ \langle x\rangle^*$ is the simple average of the non-zero data points; and of course

$\displaystyle {\sigma}_{\langle x \rangle_{\!\mathrm{w(1)}}}^{\mathrm{corrected}} = \mathsf{GoF}_{(1)}\ \sigma_{\langle x \rangle_{\!\mathrm{w(1)}}}
$



Thattil Dhanya 2019-04-08