next up previous contents
Next: Comparison Up: Average vs. weighted average Previous: Straight Poisson (zero-skipping) weighted   Contents

Mighell-Poisson weighted average

When $ O_j=C_j+\min{\ensuremath{\left({1,C_j}\right)}}$ and $ \sigma_j^2=C_j+1$

$\displaystyle \langle x \rangle_{\!\mathrm{w(2)}}={\ensuremath{\displaystyle{\f...
...uremath{\displaystyle{1
}}}}{{\ensuremath{\displaystyle{
C_j+1
}}}}}}}
}}}}}}}
$

$\displaystyle \sigma_{\langle x \rangle_{\!\mathrm{w(2)}}} = {\ensuremath{\disp...
..._{\!\mathrm{w(2)}}}}}}{{\ensuremath{\displaystyle{
N_{\mathrm{obs}}^*
}}}}}}}}
$

$\displaystyle \mathsf{GoF}_{(2)}=
\sqrt{
{\ensuremath{\displaystyle{\frac{{\ens...
...{\left({
\langle x\rangle^*-\langle x \rangle_{\!\mathrm{w(2)}}+1
}\right)}}
}
$

where $ \langle x\rangle^*$ is the simple average of the non-zero data points; and of course

$\displaystyle {\sigma}_{\langle x \rangle_{\!\mathrm{w(2)}}}^{\mathrm{corrected}} = \mathsf{GoF}_{(2)}\ \sigma_{\langle x \rangle_{\!\mathrm{w(2)}}}
$



Thattil Dhanya 2019-04-08