next up previous contents
Next: Zero-skipping average Up: Average vs. weighted average Previous: Average vs. weighted average   Contents

Simple average

Suppose we have $ N_{\mathrm{obs}}$ Poisson-variate experimental evaluations $ C_j,\quad j=1\ldots N_{\mathrm{obs}}$ , of the same quantity $ x$ . There are different ways to obtain from all $ N_{\mathrm{obs}}$ data values a single estimate of the observable which is better than any of them. The most straightforward and the best is the simple average

$\displaystyle x=\langle x\rangle={\ensuremath{\displaystyle{\frac{{\ensuremath{...
...aystyle{ N_{\mathrm{obs}}}}}}}}}
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j\ .
$

As the sum of Poisson variates is a Poisson variate, the standard deviation

$\displaystyle \sigma_x=\sqrt{\langle x^2\rangle-\langle x\rangle^2}=\sqrt{
{\en...
...\mathrm{obs}}}}}}}}}
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j
}\right)}}
}
$

can be evaluated more comfortably as

$\displaystyle \sigma_x={\ensuremath{\displaystyle{\frac{{\ensuremath{\displayst...
...style{\langle x\rangle}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}}}}}
$



Thattil Dhanya 2019-04-08