next up previous contents
Next: How are different positions Up: Angular conversion Previous: Angular conversion   Contents


How is the channel number coverted into angle?

Mythen II modules are composed by 1280 pixels, each having width p=0.05 mm, and numbered with j=0,..,1279. Angles are counted counterclockwise from the beam direction. For the m-th module, the angle $ \alpha_{jm}$ of its j-th pixel center can be determined using the three geometric parameters $ R_m$  [mm], $ \Phi_m$  [deg], $ D_m$  [mm], as in Fig. [*]. The detector group uses instead the 3 parameters center $ c_m$  [ ], offset $ o_m$  [deg], conversion $ k_m$  [ ]. The law with the 3 geometric parameter is

$\displaystyle \alpha_{jm}=\Phi_m-{\ensuremath{\left({{\ensuremath{\displaystyle...
...remath{\displaystyle{D_m-pj}}}}{{\ensuremath{\displaystyle{R_m}}}}}}}}\right)}}$ (5.1)

The corresponding law using DG's parameters is

$\displaystyle \alpha_{jm}=o_m+{\ensuremath{\left({{\ensuremath{\displaystyle{\f...
...t)}}\arctan{\ensuremath{\left[{{\ensuremath{\left({j-c_m}\right)}}k_m}\right]}}$ (5.2)

One can convert the two forms by equating separately the term out of the arctan and the argument of arctan for two different values of j. It results
$\displaystyle c_m$ $\displaystyle =$ $\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{D_m}}}}{{\ensuremath{\displaystyle{p}}}}}}};$ (5.3)
$\displaystyle k_m$ $\displaystyle =$ $\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{p}}}}{{\ensuremath{\displaystyle{R_m}}}}}}};$ (5.4)
$\displaystyle o_m$ $\displaystyle =$ $\displaystyle \Phi_m-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyl...
...\frac{{\ensuremath{\displaystyle{D_m}}}}{{\ensuremath{\displaystyle{R_m}}}}}}}.$ (5.5)

Conversely,
$\displaystyle \Phi_m$ $\displaystyle =$ $\displaystyle o_m+{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{180}}}}{{\ensuremath{\displaystyle{\pi}}}}}}}c_mk_m;$ (5.6)
$\displaystyle R_m$ $\displaystyle =$ $\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{p}}}}{{\ensuremath{\displaystyle{k_m}}}}}}};$ (5.7)
$\displaystyle D_m$ $\displaystyle =$ $\displaystyle c_m p.$ (5.8)


next up previous contents
Next: How are different positions Up: Angular conversion Previous: Angular conversion   Contents
Thattil Dhanya 2019-04-08